
 ©Google Inc. or its affiliates. All rights reserved. Do not distribute. ©Google Inc. or its affiliates. All rights reserved. Do not distribute.
May only be taught by Google Cloud Platform Authorized Trainers.

BigQuery for Data Analysts
V1.2

BigQuery Functional Overview

Approximate timing: 90 minutes

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Agenda

1

2

3

4

5

BigQuery Organization

BigQuery Storage

BigQuery Architecture

Interacting with BigQuery

2

Quiz & Lab

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● Project
○ Top-level structure
○ Contains users, APIs, authentication, billing, data, access control

lists (control access to datasets and jobs)
● Dataset

○ Named parent of 1 or more tables
● Table

○ Columnar structure that stores data
● Job

○ Controls potentially long-running actions

BigQuery Project Structure

3

Notes:
Projects. A project contains information such as subscribed service API(s),
authentication information, billing information and Access Control Lists
(ACLs) that determine access to the Datasets and the Jobs. Projects are
created and managed using the APIs Console. For information about the
related API type, see Projects.

Datasets. A dataset is a grouping mechanism that holds zero or more tables.
A dataset is the lowest level unit of access control. You cannot control access
at the table level. A dataset is contained within a specific project. Each dataset
can be shared with individual users. Datasets are also referenced in the SQL
statements when interacting with BigQuery. For information about the related
API type, see Datasets.

Tables. Row-column structures that contain actual data. They belong to a
Dataset. You cannot control access at the table level, you do it at Dataset
level. For information about the related API type, see Tables.

Jobs. Jobs are used to start all potentially long-running actions, such as
queries, table import, and export requests. Shorter actions, such as list or get
requests, are not managed by a job resource. For information about the
related API type, see Jobs. Each job has a job id. A very good use of job id is

https://developers.google.com/bigquery/docs/data%23aclsandrights
https://code.google.com/apis/console/
https://developers.google.com/bigquery/docs/reference/v2/projects
https://developers.google.com/bigquery/docs/reference/v2/datasets
https://developers.google.com/bigquery/docs/reference/v2/tables
https://developers.google.com/bigquery/docs/reference/v2/jobs

when you load a large dataset. BigQuery rejects load job with the same job id.
Therefore, guaranteeing that data would not be loaded twice.

A great benefit to point out here: You do not need to duplicate data across
many clusters to achieve resource separation. Just use ACLs.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Projects

5

● Root namespace for objects
● Manages billing
● Manages users
● Manages user privileges
● Contains one or more

datasets
● Contains jobs
● Contains access control lists

and IAM roles

Dataset (organization, access
control)

Job (query, import, export, copy)

Project (billing, top-level container)

Table (data with schema)

Notes:
Datasets are owned by projects, which control billing and serve as a global
namespace root - all of the object names in BigQuery are relative to the
project.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Datasets

6

● Contain a collection of
tables, views

● Access control applied to all
tables/views in dataset

● ACLs for Readers, Writers,
and Owners

● Access can be granted to
datasets for users who are
not members of the project

Dataset (organization, access
control)

Job (query, import, export, copy)

Project (billing, top-level container)

Table (data with schema)

Notes:
Datasets are the lowest level of ACL. BigQuery currently does not manage
access to individual tables or views within the dataset. Later in the course, we
will show how you can implement access control to a table through the use of
views which would reside in a separate dataset can would limit access to the
base level tables.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Tables

7

● Collection of columns, rows
○ Data stored in managed storage

● Have a schema
○ Describes strongly-typed

columns of values
● Views are supported

○ Virtual tables defined by SQL
query

● Can be external (federated)
○ Query Google Cloud Storage

directly (discussed later)

Dataset (organization, access
control)

Job (query, import, export, copy)

Project (billing, top-level container)

Table (data with schema)

Notes:
Before you can query your data, you must first load it into BigQuery or set up
the data as a federated data source. You can bulk load the data by using a job,
or stream records individually. Alternately, you can skip the loading process by
setting up a table as a federated data source.

Load jobs support three data sources:

1. Objects in Google Cloud Storage
2. Data sent with the job or streaming insert
3. A Google Cloud Datastore backup

Loaded data can be added to a new table, appended to a table, or can
overwrite a table. Data can be represented as a flat or nested/repeated
schema.

https://cloud.google.com/bigquery/federated-data-sources
https://cloud.google.com/bigquery/what-is-bigquery#jobs
https://cloud.google.com/bigquery/streaming-data-into-bigquery
https://cloud.google.com/storage/
https://cloud.google.com/bigquery/streaming-data-into-bigquery
https://cloud.google.com/datastore/

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Jobs

8

● Used to start all
potentially long-running
actions

● Examples:
○ Queries
○ Importing/exporting data
○ Copying data

● Can be cancelled

Dataset (organization, access
control)

Job (query, import, export, copy)

Project (billing, top-level container)

Table (data with schema)

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Agenda

1

2

3

4

5

BigQuery Organization

BigQuery Storage

BigQuery Architecture

Interacting with BigQuery

9

Quiz & Lab

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute. 10

BigQuery Storage

Record-oriented storage Columnar storage

Traditional RDBMS storage BigQuery storage

Notes:
BigQuery stores data in columns.

Most queries only work on a small number of fields and BigQuery only needs
to read those relevant columns to execute a query. Since each column has
data of same type, BigQuery could compress the column data much more
effectively.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● BigQuery data is stored on persistent disks in
distributed storage
○ Each column is stored in its own file
○ Each file is compressed and encrypted on disk
○ Data is immutable
○ Storage is durable

■ Each file is replicated a minimum of 3 times in distributed storage
across datacenters

● No indexes, keys, or partitions are required
● Scales to dozens of petabytes

11

BigQuery Managed Storage (1 of 2)

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute. 12

BigQuery Managed Storage (2 of 2)

R
a
3

2

1

3

21 3

2

1

1

Zone A Zone B Zone C

Column 1 Column 2 Column 3

Region

Notes:
Each column in a table is stored in a data file. For example, a table that
contains three columns will equate to 3 files. Each file is replicated a
minimum of 3 times and dispersed across multiple zones within a region.

Each file is also compressed and encrypted while it is stored on the disk. This
is done for performance and insures an additional level of security. When a
column is requested, BigQuery finds the file on the first available disk.

The slide shows that a table that contains 3 columns will be stored in 3
separate files on 3 different persistent disk drives in A zone. The files will also
be replicated in B zone and C zone to ensure file integrity. The example also
shows that C zone has two copies of column 1 on separate disks.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute. 13

Storage Engine 2006-2015: ColumnIO

xc*

c8!

8ec

7h!

a7c

c-%

{Hey Jude, 5375}

{My Michelle, 2188}

{My Michelle, 9363}

{Hey Jude, 9502}

{Here Comes The Sun, 7383}

{My Michelle, 3912}

Decompress Filter

SELECT play_count FROM songs WHERE name CONTAINS “Sun”;

F$#h5

rm7y5

rm7y5

F$#h5

4t#@h

rm7y5

Data

CONTAINS(“Sun”)

CONTAINS(“Sun”)

CONTAINS(“Sun”)

CONTAINS(“Sun”)

CONTAINS(“Sun”)

CONTAINS(“Sun”)

Emit

{7833}

Notes:
Prior to 2015, ColumnIO was the storage engine for BigQuery. ColumnIO
stores each field of a record in a different stream and then compresses the
data. When the query is processed, the data is decompressed and the filter is
applied.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute. 14

Storage Engine 2016-Now: Capacitor (1 of 2)

Dictionary

SELECT play_count FROM songs WHERE name CONTAINS “Sun”;

0

1

1

0

2

1

CONTAINS(“Sun”)

CONTAINS(“Sun”)

CONTAINS(“Sun”)

0

1

2

F

F

T

Data Emit

{7833}

Filter Lookup

xc*

c8!

8ec

7h!

a7c

c-%

Hey Jude

My Michelle

Here Comes the
Sun

Notes:
Capacitor looks similar to ColumnIO. In Capacitor, the data is stored in a
compressed columnar format, but instead of decompressing all the data, only
the relevant data is decompressed. Then, it is matched against the data in
compressed format and the result is emitted. There are also a couple of
different compression types available.

Note that the first column contains small integers. These are indexes into the
dictionary that contains the field values.

In the dictionary we see that the three values map to different Beatles song
titles. To apply the filter, rather than applying the predicate for each value in
the data column, it is applied once per unique value in the dictionary.

The predicate result is written to a truth table in the same order as the
dictionary. Then, the data column is scanned, and the data value is used as an
index into our truth table. If it is True, then the row is emitted.

Note that the predicate (which could be arbitrarily complex) is run once for
each unique value in the column. As well, only the minimal amount of data
decompression is done.

For more information on Capacitor, see:
https://cloud.google.com/blog/big-data/2016/04/inside-capacitor-bigquerys-n
ext-generation-columnar-storage-format.

https://cloud.google.com/blog/big-data/2016/04/inside-capacitor-bigquerys-next-generation-columnar-storage-format
https://cloud.google.com/blog/big-data/2016/04/inside-capacitor-bigquerys-next-generation-columnar-storage-format
https://cloud.google.com/blog/big-data/2016/04/inside-capacitor-bigquerys-next-generation-columnar-storage-format

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Storage Engine 2016-Now: Capacitor (2 of 2)
● Rebuilt query engine to operate over compressed

data
● Huge performance improvements:

○ Average for all queries: 2x faster
○ Selective filters: 10-1000x faster

● Lower CPU billing tiers (discussed later)

16

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Agenda

1

2

3

4

5

BigQuery Organization

BigQuery Storage

BigQuery Architecture

Interacting with BigQuery

17

Quiz & Lab

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● Massive, highly available, multi-tenant compute
cluster separate from data storage

● Cluster is a combination of CPU, RAM, and
networking that processes your queries
○ Hundreds of thousands of cores used ONLY for queries
○ Other workloads (load, egress) do not compete for compute

resources

18

BigQuery Processing (1 of 3)

Notes:
The highly parallel nature of BigQuery allows for all workers to read data from
storage at the same time.
Column storage allows for BigQuery to only read the columns requested,
unlike row based DBMS that read data blocks.
Single scan of data means that data from storage needs to be only read once
per query.
No indexes are needed for BigQuery. Data for each column is compressed and
stored in its own file.
BigQuery SQL is now ANSI SQL-compliant.
Data is immutable in BigQuery, so UPDATE and DELETE statements are not
currently supported.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● Compute is shared - You consume (and pay for) only
the compute resources you need
○ Resource deployment is managed - You pay only for

consumption
○ Slots can be used to reserve resources (covered later)

● No cluster setup is required
○ Storage is highly optimized for SQL
○ Storage and compute scale independently
○ Compute is managed - No need to scale cores

19

BigQuery Processing (2 of 3)

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● Petabit network allows access to storage
○ Network pipe between storage and compute is massive

■ Very different from services that read data from traditional cloud
storage

○ No need to move data into the cluster
○ Single scan of data on disk

■ Storage read only once per query

20

BigQuery Processing (3 of 3)

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Query Processing 2006-2015

21

Borg - Cluster management system

Mixer 0

Mixer 1 Mixer 1

Leaf Leaf Leaf Leaf

Distributed storage
(Colossus)

Dremel query engine

● Distributed, columnar storage

● Long-lived, shared serving tree

● Partial reduction
● Diskless data flowMixers

Leaf
nodes

(or slots)

Root
server

Jupiter ● High speed, terabit network

Notes:
Dremel turns your SQL query into an execution tree.

The root server determines the leaf servers needed to retrieve data and
performs record assembly, ordering, and final filtering.

The mixers perform aggregate and scalar functions against the data read by
the leaf nodes.

The leaves of the tree are called ‘slots’, and do the heavy lifting of reading the
data from Colossus and doing any computation necessary. Leaf nodes have
their own local storage.

BigQuery relies on Colossus, Google’s latest generation distributed file system.
Each Google datacenter has its own Colossus cluster, and each Colossus
cluster has enough disks to give every BigQuery user thousands of dedicated
disks at a time. Colossus also handles replication, recovery (when disks crash)
and distributed management (so there is no single point of failure). Colossus
is fast enough to allow BigQuery to provide similar performance to many
in-memory databases, but leveraging much cheaper yet highly parallelized,
scalable, durable and performant infrastructure.

BigQuery leverages the ColumnIO columnar storage format and compression
algorithm to store data in Colossus in the most optimal way for reading large

http://static.googleusercontent.com/media/research.google.com/en/us/university/relations/facultysummit2010/storage_architecture_and_challenges.pdf

amounts of structured data.Colossus allows BigQuery users to scale to
dozens of Petabytes in storage seamlessly, without paying the penalty of
attaching much more expensive compute resources — typical with most
traditional databases.

To give you thousands of CPU cores dedicated to processing your task,
BigQuery takes advantage of Borg, Google’s large-scale cluster management
system. Borg clusters run on dozens of thousands of machines and hundreds
of thousands of cores.

Besides obvious needs for resource coordination and compute resources, Big
Data workloads are often throttled by networking throughput. Google’s Jupiter
network can deliver 1 Petabit/sec of total bisection bandwidth, allowing us to
efficiently and quickly distribute large workloads. Jupiter networking
infrastructure might be the single biggest differentiator in Google Cloud
Platform. It provides enough bandwidth to allow 100,000 machines to
communicate with any other machine at 10 Gbs.

B-Tree

Another way to look at this is it’s a B-Tree index built on the fly. The difference
here is that each node is a computational instance (a compute node with
memory, disk and cpu). The result of the architecture and query processing is
that a set of computers becomes a parallelized computational tree that read
columnar data very efficiently.

Map Reduce

It’s also like a map reduce with the bottom row being the mappers, the
reducers and controller. But
- you don’t have to shuffle.
- you have a very high bandwidth between the mapper and reducer
- it’s very easy to do multiple rounds because it’s essentially just another RPC.

Many of the aggregation functions can be parallelized.

http://research.google.com/pubs/pub43438.html
http://research.google.com/pubs/pub43438.html
http://googlecloudplatform.blogspot.com/2015/06/A-Look-Inside-Googles-Data-Center-Networks.html
http://googlecloudplatform.blogspot.com/2015/06/A-Look-Inside-Googles-Data-Center-Networks.html

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Query Processing 2015-Present

23

Borg - Cluster management system

Dremel query engine

● Distributed, columnar storage

● Dynamic, shared serving tree
○ Number of shards and levels

based on query needs

● High speed, petabit network

Master

Shard Shard

Distributed storage
(Colossus)

Jupiter

ShardShard

Shard Shard

Notes:
● Now, BigQuery has a dynamic serving tree that looks different for each

query (sized by query needs)
● BigQuery can handle complex queries much better (multi-stage queries

are several times faster)
● Multiple stages, joins, are a separate level in the tree
● BigQuery does not need to do several passes through the tree as it did

previously when the tree was static

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Example - Query Processing (1 of 2)

24

SELECT state, year, COUNT(*) AS count_babies
FROM 'bigquery-public-data.samples.natality'
WHERE year >= 1980 and year < 1990
GROUP BY state, year
ORDER BY 3 desc
LIMIT 10

Count of babies by
state, year

Notes:
Here is an example query that the next slide will dissect to show how queries
are processed.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Example - Query Processing (2 of 2)

25

WRITE: count_babies, state, year BY HASH(0, state)
AGGREGATE: count(*) AS count_babies, GROUP BY state,
year
READ: state, year WHERE year >= 1980 AND year < 1990

~137M rows in

~48K rows output (after Stage 1)

WRITE: count_babies, state, year
AGGREGATE: SUM_OF_COUNTS(count_babies)
READ: count_babies, state, year FROM stage 1

90 rows output (after Stage 2)

WRITE: count_babies, state, year
LIMIT: 10
READ: count_babies, state, year FROM stage 2

10 rows (output)

Stage 1

Stage 3

Stage 2

Master

Shard Shard

Distributed storage
(Colossus)

Network (Jupiter)

Shard Shard

Notes:
- Because of the columnar data format, only two data fields need to be read
from the storage (state, and year) in this query.
- With a distributed file system, the workers read in chunks of the data in
parallel, and apply the filter and aggregation. Shuffling may also occur
between stages. The number of workers processing data at each stage is
dynamically allocated according to the needs of the query.
- The workers pass the data to the master in the final stage. The master does
the final aggregation, sorting, limiting, and returning the data to the client.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Benefits of New Architecture

26

Dynamic execution

Automatic sizing and
query planning.

No more EACH keyword

Helps with JOIN, GROUP
BY, PARTITION, and large
query results

Poseidon

5 times faster to get
data into BigQuery

New load file formats
(AVRO) (10x faster than
JSON imports)

Consistent scheduling

Fair scheduling between
customers

Each customer can use up to
2000 parallel workers

Predictable performance

Notes:
Dynamic Execution: There is no need to use the EACH keyword. With dynamic
query planning, BigQuery calculates how to run (size) your query.

Poseidon: The data ingestion mechanism for BigQuery is now 5x faster.
BigQuery also supports the AVRO storage format which is up to 10x faster.

Consistent scheduling: Consistent scheduling ensures your queries do not
interfere with queries running for other customers (by default you get 2000
workers). If you need more than 2000 workers, contact your sales
representative.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Query Plan Explanation (1 of 2)

27

● BigQuery provides diagnostic information on
completed query’s execution plan
○ Similar to EXPLAIN statement available in some other query

engines
○ Can often use this information to improve query

performance
● After a query runs, click Explanation to view metadata
● Information on previous slide is from Explanation

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Query Plan Explanation (2 of 2)

28

● Example using the previous natality query:

● Additional details:
https://cloud.google.com/bigquery/query-plan-explanation

https://cloud.google.com/bigquery/query-plan-explanation
https://cloud.google.com/bigquery/query-plan-explanation

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Agenda

1

2

3

4

5

BigQuery Organization

BigQuery Storage

BigQuery Architecture

Interacting with BigQuery

29

Quiz & Lab

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● Browser-based graphical user interface
https://bigquery.cloud.google.com/

● Upload and import data
● Build and execute queries and view results
● Switch projects, create, list, maintain datasets and tables
● View schemas, and metadata
● Download, save, and export data
● View, edit, and re-execute jobs from history

30

BigQuery Web User Interface

https://bigquery.cloud.google.com/
https://bigquery.cloud.google.com/

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Web UI Components (1 of 3)

31

Write a new query

Project name
Dataset

Table name is represented as follows:
Current Project: <dataset>.<table name>
Different Project: <project>:<dataset>.<table>
Example: publicdata:samples.wikipedia

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Web UI Components (2 of 3)

32

● Send results to new or existing
tables

● Allow for large result sets
● Turn data caching on or off
● Change query priority
● Edit User Defined Functions (UDFs)

Notes:
Destination table - write the query result to the selected table.
Result size - the maximum query response size is 128M compressed. When
“Allow Large Results” is enabled, there is no limit to the result size.
Query caching - use cached result if available. You aren't charged for cached
queries.
Query priority - running query in batch (delayed) or interactive mode
UDF source URIs – use to reference an external User-Defined Function (UDF),
written in Javascript. Similar to the "Map" function in a MapReduce: it takes a
single row as input and produces zero or more rows as output. The output can
potentially have a different schema than the input.
SQL Version - use BigQuery SQL (when turned off, uses Standard SQL)

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Web UI Components (3 of 3)

33

Saving/sharing result in CSV, JSON, table, or Sheets

Estimated size before
running the query and
validation of query
syntax

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

BigQuery CLI (1 of 2)

34

● Python-based tool to access BigQuery
● Best option for creating command scripts
● Provides more options and features than Web UI
● Allows for asynchronous submission of commands
● Provides an interactive mode
● Use on client machine or Compute Engine instance by

installing Google Cloud SDK
● Also accessible via Cloud Shell

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

BigQuery CLI (2 of 2)
● Use from shell script or

from most languages
○ subprocess.call()

○ Runtime.getRuntime()

.exec()

○ system(), and so on
● bq manages

authentication,
authorization

35

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

CLI Example

36

$ bq load ds.new_tbl ./info.csv
./info_schema.json
$ bq insert dataset.table /tmp/mydata.json
$ echo '{"a":1, "b":2}' | bq insert dataset.table
...
$ bq query 'select count(*) from
publicdata:samples.shakespeare'

bq CLI

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Interactive Shell Example

37

$ bq shell
Welcome to BigQuery! (Type help for more
information.)
project-id> ls
datasetId

mydataset
project-id> exit
Goodbye.

Interactive shell

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

API Library

38

● RESTful API allows for programmatic interface to
BigQuery

● Supports several languages
○ Java, Python, JavaScript, Ruby, PHP
○ Google Apps Script

● Library modules handle authorization via OAuth2
○ Provide client ID and client secret

● See:
https://developers.google.com/bigquery/client-libraries

https://developers.google.com/bigquery/client-libraries
https://developers.google.com/bigquery/client-libraries

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Agenda

1

2

3

4

5

BigQuery Organization

BigQuery Storage

BigQuery Architecture

Interacting with BigQuery

39

Quiz & Lab

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Which of the following statements are true?
(select 2 of the available options)

❏ There are two interfaces you can use to access BigQuery
❏ Table data is stored in one zone
❏ A dataset belongs to a single project and contains tables
❏ BigQuery is highly parallel and distributed

40

Module Review

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Image by
Connie Zhou

Lab
Exploring BigQuery interfaces

41

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Resources
● BigQuery fundamentals

https://cloud.google.com/bigquery/what-is-bigquery#fun
damentalsls

● Google Cloud BigQuery command-line tool
https://developers.google.com/bigquery/bq-command-lin
e-tool

● Big data blog - BigQuery under the hood
https://cloud.google.com/blog/big-data/2016/01/bigquer
y-under-the-hood

42

https://cloud.google.com/bigquery/what-is-bigquery#fundamentalsls
https://cloud.google.com/bigquery/what-is-bigquery#fundamentalsls
https://cloud.google.com/bigquery/what-is-bigquery#fundamentalsls
https://developers.google.com/bigquery/bq-command-line-tool
https://developers.google.com/bigquery/bq-command-line-tool
https://developers.google.com/bigquery/bq-command-line-tool
https://cloud.google.com/blog/big-data/2016/01/bigquery-under-the-hood
https://cloud.google.com/blog/big-data/2016/01/bigquery-under-the-hood
https://cloud.google.com/blog/big-data/2016/01/bigquery-under-the-hood

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Which of the following statements are true?
(select 2 of the available options)

❏ There are two interfaces you can use to access BigQuery
❏ Table data is stored in one zone
✓ A dataset belongs to a single project and contains tables
✓ BigQuery is highly parallel and distributed

43

Module Review Answers

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

cloud.google.com

