
 ©Google Inc. or its affiliates. All rights reserved. Do not distribute. ©Google Inc. or its affiliates. All rights reserved. Do not distribute.
May only be taught by Google Cloud Platform Authorized Trainers.

BigQuery for Data Analysts
V1.2

Query Performance

Approximate timing: 60 minutes

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Agenda
1

2

3

4

5

6

JOIN and GROUP BY – How They Affect Performance

Table Decorators

Wildcards

Partitions

2

Query Performance Tips

Quiz & Lab

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● When possible, avoid CROSS JOIN
● Each row from first table is joined to every row in

second table returning large amounts of data
● May result in “resources exceeded” errors
● Window functions often more efficient

3

JOIN

Notes:
The 8MB right-side table join limit no longer applies.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● Use GROUP BY when the number of distinct groups is
small (low cardinality)
○ Aggregation of data performed in shards
○ Low cardinality means shards do not shuffle data
○ High performance

● Large GROUP BY is less optimal
○ High cardinality requires aggregation performed by multiple

shards
○ Shards produce hash key for each value and shuffle data

4

GROUP BY

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

ROLLUP - Legacy SQL

5

SELECT year, is_male, COUNT(1)

AS COUNT

FROM

 publicdata:samples.natality

WHERE

 year >= 2000 AND year <=2002

GROUP BY ROLLUP(year, is_male)

ORDER BY year, is_male

+--------+---------+----------+
| year | is_male | count |
+--------+---------+----------+
NULL	NULL	12122730
2000	NULL	4063823
2000	false	1984255
2000	true	2079568
2001	NULL	4031531
2001	false	1970770
…		
2002	true	2060857
+--------+---------+----------+

● Use ROLLUP function in legacy SQL for large GROUP BY
○ Adds extra rows to result that represent partial aggregations

Query resultGROUP BY with ROLLUP

Notes:
The fields in the GROUP BY must be in the SELECT (declares which columns to
process).

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Example: Large GROUP BY

6

SELECT
 LogEdits, COUNT(contributor_id)Contributors
FROM (
 SELECT
 contributor_id,
 INTEGER(LOG10(COUNT(*))) LogEdits
 FROM [publicdata:samples.wikipedia]
 GROUP BY contributor_id)
GROUP BY LogEdits
ORDER BY LogEdits DESC

Large GROUP BY query

Notes:
This is a more complicated query to find out how many authors contribute to
wikipedia by the number of edits that he/she made. The LOG10(COUNT(*)) is a
way to broadly categorize the number of edits into buckets. For example, if a
user contributed 120 edits, then INTEGER(LOG10(120)) will yield 2. Similarly, if
a user contributed 185 edits, he will be grouped into the same bucket. If a user
contributed 1500 edits, then INTEGER(LOG10(1500) will yield 3. So, the inner
SELECT statement groups each contributor into buckets and the final SELECT
statement counts the number of contributors for each bucket.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Example - Large GROUP BY Query Processing

7

READ Contributors, LogEdits from stage2 output AS
publicdata:samples.wikipedia
AGGREGATE SUM_OF_COUNTS(Contributors) AS Contributors
GROUP BY LogEdits
WRITE Contributors, LogEdits to stage3 output

READ Contributors, LogEdits FROM stage3 output AS
publicdata:samples.wikipedia
SORT LogEdits DESC
WRITE Contributors, LogEdits to output

Stage 1

Stage 4

Stage 2

Master

Shard Shard

Distributed storage
(Colossus)

Network (Jupiter)

Shard Shard

Shard Shard

Stage 3

READ contributor_id, f0_ FROM stage1 output AS
publicdata:samples.wikipedia
AGGREGATE SUM_OF_COUNTS(f0_) AS f0_ GROUP BY contributor_id
COMPUTE INTEGER(LOG10(f0_))
AGGREGATE COUNT(contributor_id) AS Contributors GROUP BY
LogEdits
WRITE Contributors, LogEdits to stage2_output BY
HASH(LogEdits)

READ contributor_id FROM publicdata:samples.wikipedia
AGGREGATE COUNT_STAR() AS f0_ GROUP BY contributor_id
WRITE contributor_id, f0_ to stage1 output BY
HASH(contributor_id)

Shuffling can occur

Notes:
Because the number of contributors to Wikipedia is huge, the INNER SELECT
used ‘GROUP BY’. The large GROUP BY triggered shuffling between stages.
Shuffling can be viewed as ‘partitioning’. Shuffling guarantees that all records
which have the same value will be stored in the same shard. This allows those
operations to be performed efficiently. In the example, each contributor will be
shuffled to the same shard. Assuming the distribution is quite even, the
implication is that each shard will have fewer contributors to process, hence
less memory consumption.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Agenda
1

2

3

4

5

6

JOIN and GROUP BY – How They Affect Performance

Table Decorators

Wildcards

Partitions

8

Query Performance Tips

Quiz & Lab

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● Use to perform the most cost-effective query of a
subset of your data

● Table decorators can be used whenever a table is
read
○ Copying a table, exporting a table, or listing data

● Can also be used to undelete a table within 2 days on
a best-effort basis

● Currently supported in legacy SQL only

9

BigQuery Table Decorators

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Table Decorator Types
Snapshot decorators

● @<time>
● Time must be within last 7

days
● @0 references oldest

snapshot
● Relative time is negative
● Absolute time is positive

Range decorators

● @<time 1>-<time 2>
● Time must be within last 7

days
● References data between

<time 1> and <time 2>
● Time 2 is optional and

defaults to ‘now’

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Example: Snapshot Table Decorator
● @-14400000 - is a reference to a snapshot of the table at

-14400000 milliseconds since the current time

11

SELECT count(*)FROM

[publicdata:samples.shakespe

are@-14400000]

Snapshot decorator - Legacy SQL

Notes:
The %-s flag can be used with table decorators to remove streaming data from
the response.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Agenda
1

2

3

4

5

6

JOIN and GROUP BY – How They Affect Performance

Table Decorators

Wildcards

Partitions

12

Query Performance Tips

Quiz & Lab

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Wildcard Functions - Legacy SQL (1 of 2)
● Cost-effective way to query data from a set of “sharded”

tables
○ Only the tables that match the wildcard are accessed
○ Limits BigQuery data charges

● Equivalent to UNION of tables matched by wildcard
● Limits:

○ No query can reference more than 1,000 tables (even via views)
○ The query planner collects table metadata which can have a

performance impact for a large number of shards

13

Notes:
For more information on table wildcard functions, see:
https://cloud.google.com/bigquery/query-reference?hl=en#tablewildcardfunct
ions.

https://cloud.google.com/bigquery/query-reference?hl=en#tablewildcardfunctions
https://cloud.google.com/bigquery/query-reference?hl=en#tablewildcardfunctions
https://cloud.google.com/bigquery/query-reference?hl=en#tablewildcardfunctions

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Wildcard Functions - Legacy SQL (1 of 2)
Function Description

TABLE_DATE_RANGE(prefix,
timestamp1, timestamp2)

Queries daily tables that overlap with the time range between
<timestamp1> and <timestamp2>.
Table names must have the following format: <prefix><day>, where <day>
is in the format YYYYMMDD.
You can use date and time functions to generate the timestamp
parameters. For example:
● TIMESTAMP('2012-10-01 02:03:04')
● DATE_ADD(CURRENT_TIMESTAMP(), -7, 'DAY')

TABLE_DATE_RANGE_STRICT(
prefix, timestamp1,
timestamp2)

This function is equivalent to TABLE_DATE_RANGE. The only difference
is that if any daily table is missing in the sequence,
TABLE_DATE_RANGE_STRICT fails and returns a Not Found: Table
<table_name> error.

TABLE_QUERY(dataset,
expr)

Queries tables whose names match the supplied expr. The expr
parameter must be represented as a string and must contain an
expression to evaluate. For example, 'length(table_id) < 3'.

14

https://cloud.google.com/bigquery/query-reference#datetimefunctions

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Wildcard Function Examples (1 of 2)

15

● Wildcards can be used with conditional logic
○ Pulls data from tables that match condition
○ Tables need to contain ‘common’ columns
○ Table_Query must contain an expression to evaluate

● Assuming the following tables: mydata.partsales,
mydata.laborsales, mydata.partnersales:

SELECT month, SUM(sales), SUM(discount)

FROM (TABLE_QUERY(mydata,’table_id CONTAINS “sales” and

length(table_id < 10’))

GROUP BY month

Wildcard example

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Wildcard Function Examples (2 of 2)

16

SELECT …
FROM
(TABLE_DATE_RANGE(dataset.log,TIMESTAMP(‘2015-01-01’),TIMESTAMP
(‘2015-01-03’))

log_20150101

ip_address

browser

start_time

end_time

URL

return_code

log_20150102

ip_address

browser

start_time

end_time

URL

return_code

log_20150103

ip_address

browser

start_time

end_time

URL

return_code

Wildcard example

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● Query multiple tables using concise SQL statements
● Wildcard table represents union of all tables that

match the wildcard expression (like wildcard
functions)

● Useful when dataset contains multiple, similarly
named tables with compatible schemas

● Each row in wildcard table contains special column
containing value matched by wildcard character

17

Wildcard Tables - Standard SQL (1 of 2)

Notes:
For more information on wildcard tables in standard SQL, see:
https://cloud.google.com/bigquery/docs/wildcard-tables.

https://cloud.google.com/bigquery/docs/wildcard-tables
https://cloud.google.com/bigquery/docs/wildcard-tables

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● Example:
FROM `bigquery-public-data.noaa_gsod.gsod*`

○ Matches all tables in noaa_gsod that begin with string
‘gsod’

○ ` character is required (single, double quotes are
invalid)

● Longer prefixes generally perform better than shorter
prefixes
○ For example: .gsod200* versus .*

18

Wildcard Tables - Standard SQL (2 of 2)

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Agenda
1

2

3

4

5

6

JOIN and GROUP BY – How They Affect Performance

Table Decorators

Wildcards

Partitions

19

Query Performance Tips

Quiz & Lab

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● Traditional databases get
performance boost by partitioning
very large tables

● Usually requires an administrator to
pre-allocate space, define
partitions, and maintain them

● Table sharding done by dividing
large datasets into separate tables
and adding suffix to each table name

● No pre-allocation or resource
constraints

● Suffix is YYYYMMDD timestamp
● Saves time and processing costs
● Queries use table wildcard functions

20

Table Sharding - Previous Approach

Notes:
Dividing a dataset into daily tables helped to reduce the amount of data
scanned when querying a specific date range. For example, if you have a a
year's worth of data in a single table, a query that involves the last seven days
of data still requires a full scan of the entire table to determine which data to
return. However, if your table is divided into daily tables, you can restrict the
query to the seven most recent daily tables.

Daily tables, however, have several disadvantages. You must manually, or
programmatically, create the daily tables. SQL queries are often more complex
because your data can be spread across hundreds of tables. Performance
degrades as the number of referenced tables increases. There is also a limit of
1,000 tables that can be referenced in a single query.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Example - Sharding

21

SELECT …
FROM TABLE_DATE_RANGE(sales_,
 DATE(“20160101”),
 DATE(“20160131”))

sales_20160101

sales_20160102

sales_20160131

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Table Partitioning - Current Approach (1 of 2)

22

● Time-partitioned tables are cost-effective way to manage
data, write queries spanning multiple days, months, years

● Create tables with time-based partitions and BigQuery
automatically loads data in correct partition
○ Declare the table as partitioned at creation time using

--time_partitioning_type flag
○ To create partitioned table with expiration time for

data, use time_partitioning_expiration flag

Notes:
Partitioned tables include a pseudo column named _PARTITIONTIME that
contains a date-based timestamp for data loaded into the table. The
timestamp is based on UTC time and represents the number of microseconds
since the unix epoch. For example, if data is appended to a table on April 15,
2016, all of the rows of data appended on that day contain the value
TIMESTAMP("2016-04-15") in the _PARTITIONTIME column.

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Table Partitioning - Current Approach (2 of 2)

23

● To query partitioned table, provide date or range of dates
and query processes data for interval specified

● Only data scanned is in partitions specified by interval
● Queries are more performant, cheaper
● Currently only supported by legacy SQL

Notes:
For information on table partitioning best practices, see:
https://cloud.google.com/bigquery/docs/partitioned-tables#best_practices.

https://cloud.google.com/bigquery/docs/partitioned-tables#best_practices
https://cloud.google.com/bigquery/docs/partitioned-tables#best_practices

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Example - Table Partitioning

24

SELECT …
FROM sales
WHERE _PARTITIONTIME
BETWEEN TIMESTAMP(“20160101”)
 AND TIMESTAMP(“20160131”)

20160101
20160102

sales

20160131

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Agenda
1

2

3

4

5

6

JOIN and GROUP BY – How They Affect Performance

Table Decorators

Wildcards

Partitions

25

Query Performance Tips

Quiz & Lab

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● Denormalize tables for performance
● Select only needed columns - Do not use Select *
● Schedule batch queries at off-peak hours using jobs
● Use caching when possible

○ Caching is best effort
○ If table data changes, cache is invalidated
○ Use jobs.getQueryResults to page through cached query

results in a temporary table (no charge)

26

Query Performance Tips (1 of 3)

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● Try to use ORDER BY and LIMIT in outermost queries
○ LIMIT is applied to results by Master

● Build queries from the inside out by using subqueries
○ Filter data in subqueries
○ Perform arithmetic, ordering, case logic in outer query

● Use queries to create materialized intermediate
tables
○ Create subset of complex data in destination table
○ Partially aggregate data in destination table

27

Query Performance Tips (2 of 3)

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

● Move heavyweight filters, such as regexp, to the end
● Avoid grouping on unbounded possible values

○ Example: Web logs with arbitrary GET parameters in the
suffix

● Consider using IF/CASE instead of self-joins because
IF/CASE has lower processing overhead
○ Self-joins require multiple disk reads

● Apply WHERE filters prior to JOINs
○ Predicate pushdown

28

Query Performance Tips (3 of 3)

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Agenda
1

2

3

4

5

6

JOIN and GROUP BY – How They Affect Performance

Table Decorators

Wildcards

Partitions

29

Query Performance Tips

Quiz & Lab

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Which of the following statements are true?
(select 2 of the available options)

❏ In legacy SQL, you can use table decorators to retrieve data
from a deleted table

❏ A “broadcast” table join invokes a shuffler operation
❏ A file in distributed storage contains data for only one column
❏ Shuffling is always invoked when a GROUP BY is used
❏ Table wildcards must have a date-stamp in the table name

30

Module Review (1 of 2)

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Which query clauses would cause shuffling to occur?
(select 2 of the available options)

❑ ORDER BY
❑ GROUP BY with few distinct values
❑ CROSS JOIN
❑ GROUP BY with many distinct values

31

Module Review (2 of 2)

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Image by
Connie Zhou

Lab
BigQuery best practices and
optimization techniques

32

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Resources
● Release notes

https://cloud.google.com/bigquery/release-notes
● Launch checklist for BigQuery

https://cloud.google.com/bigquery/launch-checklist

33

https://cloud.google.com/bigquery/release-notes
https://cloud.google.com/bigquery/release-notes
https://cloud.google.com/bigquery/launch-checklist
https://cloud.google.com/bigquery/launch-checklist

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Which of the following statements are true?
(select 2 of the available options)

✓ In legacy SQL, you can use table decorators to retrieve data
from a deleted table

❏ A “broadcast” table join invokes a shuffler operation
✓ A file in distributed storage contains data for only one column
❏ Shuffling is always invoked when a GROUP BY is used
❏ Table wildcards must have a date-stamp in the table name

34

Module Review Answers (1 of 2)

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

Which query clauses would cause shuffling to occur?
(select 2 of the available options)

❑ ORDER BY
❑ GROUP BY with few distinct values
✓ CROSS JOIN
✓ GROUP BY with many distinct values

35

Module Review Answers (2 of 2)

 ©Google Inc. or its affiliates. All rights reserved. Do not distribute.

cloud.google.com

